Adobri Solutions Ltd
   Google+ removed removed        P2P web search portal    

ON June 2, 2016 17:31 PM Simple and Economic Satellite Ground Station.


May 27, 2016 04:28 At NASDAQ Leadership series with Team Plan B Advisors Bryant McGill and Jenni Young, featured on the MarketSite Tower. In New York City Times Square

Team Plan B Advisors Bryant McGill


May 12, 2016 04:28 CBC Our vancouver. With Gloria Macarenko

CBC Our Vancouver with Gloria Macarenko

Click for Full article

May 09, 2016 07:30 am Rock 101. Willy In The Morning.

Audio recording from May 9

May 03, 2016 12:03 pm Vancouver, BC, Canada / News Talk 980 CKNW | Vancouver's News. Vancouver's Talk. With Jon McComb

ON April 5, 2016 12:30 PM Bluetooth long range communication - Deep Cove to Burnaby Mtn.

March 15, 2016 3:01AM Vancouver father and son have their eyes on the Google Lunar XPRIZE

ON March 14, 2016 12:30 PM Moon Shot Series Documentary

Episode Four of Moon Shot, a documentary from Academy Award®-nominated director Orlando von Einsiedel, Executive Producer J.J. Abrams, Bad Robot, Epic Digital Google and XPRIZE

Thank you Steven, Orlando, Katie, Sunny, Elena, Will, Sara, Andrew, Josie, Franklin, Jaime.

ON March 14, 2016 12:30 PM Moon Shot Official Trailer

ON March 14, 2016 12:30 PM Moon Shot | Episode 1 | Pittsburgh: Astrobotic

Legendary roboticist Red Whittaker is a professor who splits his time between teaching future engineers at Carnegie Mellon and owning/operating a working cattle farm in rural Pennsylvania. With a crack team of former students, he co-founded Astrobotic because he believes robots are the best solution for exploring remote, harsh environments -- from nuclear disaster zones to the moon.

ON March 14, 2016 12:30 PM Moon Shot | Episode 2 | Germany: Part-Time Scientists

Founded by an ad hoc group of part-timers, this Berlin-based GLXP team plans to open source its mission data. Team leader Robert Böhme, who was raised in the former East Germany, says the free exchange of information is ultimately more important than money.

ON March 14, 2016 12:30 PM Moon Shot | Episode 3 | India: Team Indus

Deepana Gandhi dreamed of a career in math/science, but she grew up in rural India where women aren't typically afforded the same opportunities as men. After struggling to find a job, Deepana eventually landed at Indus in Bangalore, where she works on the equations necessary for navigating to the moon.

ON March 14, 2016 12:30 PM Moon Shot | Episode 4 | Canada: Team Plan B

Our Team

ON March 14, 2016 12:30 PM Moon Shot | Episode 5 | Japan: Hakuto

When the 2011 tsunami decimated Japan's Pacific coast, robotics Professor Kazuya Yoshida and his family were lucky to escape harm's way. Understanding that it's only a matter of time before an even greater natural disaster strikes, the professor wants his rovers to explore the lunar caves, which could provide a suitable location for future human settlements that will help preserve our species.

ON March 14, 2016 12:30 PM Moon Shot | Episode 6 | Cape Canaveral: Moon Express

When Naveen Jain moved from India to the U.S., he was a poor university student with an uncertain future and a hunch that anything is possible. Decades later, after becoming a successful Internet entrepreneur, he co-founded Moon Express to help find a solution to the world's energy crisis.

ON March 14, 2016 12:30 PM Moon Shot | Episode 7 | Israel: Space IL

One of the last teams to enter the GLXP, SpaceIL was co-founded by Yariv Bash, whose grandfather's life was tragically altered by the Holocaust. Inspired by his grandfather's work as an engineer, Bash hopes SpaceIL's efforts to build cool new technology will encourage others, including his young son, to improve the world for future generations.

ON March 14, 2016 12:30 PM Moon Shot | Episode 8 | Mexico: Moonbots Mecaliks Team

9-year-old Jana González turned to playing videogames after her parent's divorce. As her love of playing games evolved into programming them, she soon discovered robotics and joined an all-girl team competing in the Moonbots, a worldwide robotics competition for kids.

ON March 14, 2016 12:30 PM Moon Shot | Episode 9 | Race for the Prize

For nearly a decade, people around the world have been racing to The Moon as part of the Google Lunar X-PRIZE, a $30 million contest. Developing an array of new technologies for landing and exploring the lunar surface, these private teams are making big strides and sacrifices to chase their dream of reaching the moon!

Fast Company:

The Verge:

The Globe and Mail:





Popular Science:



Scientific American:

Pittsburgh Post-Gazette:


WIRED Germany:

Mental Floss:

Rama’s Screen:


Capital Public Radio:


ON Feb 29, 2016 10:22 testing 1mWt communication 1850m (receiver inside the car)

TX Helix, 3 turns , 25 degree beam, 0.2mm copper. RX Helix . 16 turn 5 degree beam. 0.2mm, 36dBLNA


ON Dec 16, 2015 16:32 Pulsars test. Take 4.

Attempt to record signal of a pulsars for position determination. Patch antenna, cooling system, software recording


ON Jun 27, 2015 06:32 PM Pulsars signals? From the roof?

Developing drone to act as a gravity release for lunar rover testing. Also, drone will test comm and gyro systems.


ON Jun 5, 2015 05:52 PM Pulsars signals? From the roof?

Pulsar's navigation? Come on! Can you get it? Just one, please!


ON Jul 14, 2015 05:52 PM 3D printing on the moon | Sergei Dobrianski | TEDxIvanoFrankivsk

Sergei Dobrianski, member of team Plan B, the only Canadian team in the Google Lunar X Prize, presents at TEDxIvanoFrankivsk his team's vision of 3D printing on the moon. За умовами змагань та компанія, яка до 31 грудня 2017 р. відправить на місяць власний розроблений літальний апарат, що має висадити власного розробленого робота, виграє від компанії Google 20 млн $. Проте, за словами Сергія Добрянського, їхня команда Plan B (Канада) кладе перед собою ще більш амбітну ціль: здійснити на місяці друк на 3D-принтері. Примітно, що всі четверо учасників команди є етнічними українцями, які емігрували до Канади в 1995 р. Member of team Plan B, the only Canadian team in the space competition Google Lunar X Prize. Учасник команди Plan B, єдиної канадської команди, яка бере участь у міжнародних змаганнях Google Lunar XPrize.  

ON FEBRUARY 18, 2014 08:52 PM new antennas testing, extruder testing

After the pico-sat antenna's showed good deployment capability, comes tests of the performance both (sat's and ground station) antennas. All communications recorded on the mission control web site.

Testing the Universal Paste Extruder for 3D printers(, liquid paste works perfectly. Evaporation of the water on a heated table will allows to have small layers. A paste (less water in the mixture) needs to be adjusted.

ON FEBRUARY 10, 2014 10:35 PM Antenna and RF comm on one PCB. Mold inserts. Thermo-stabilizer

The antenna (a flat helical kind of version), and the RF part are printed on the same PCB. Verification are planned -

- mechanics of the antenna's deployment (done on Saturday) ;

- the antenna performance;

- all functionality - all RF ampl, BT front-end, and antenna itself;

- vibration tests (integrated into a pico-sat).

Inserts into the mold for printing messages (finally showed up from New-York, the record Christmas delivery). One insert creates one message on the surface of the wheel of the lunar rover. Message will be printed on lunar dust during rover movements.

First insert - First name - a teacher of physics from mining town Donetsk- Борц Илья Яковлевич.

Thermal stabilizer for vacuum oven.

ON FEBRUARY 03, 2014 12:39 AM Results on one metallurgy experiment (negative). Cubesat flat antenna design.

Thermal stabilized for vacuum oven did not work well. And all PCB for antenna has to be recalculated (no micro-strips on small square area).

SNAFU as usual.

ON JANUARY 27, 2014 10:40 PM Software, metallurgy, Antenna 2.4Ghz

Last week business. Redesigned antenna. Trajectory calculation capable to do distributed calculations. And re-fined vacuum chamber/ oven showed better performance.

Сводка за прошлую неделю ;-)

Теперь антенна будет плоская - несказанно рад - можно запихнуть в одну PCB, в то время как раньше она занимала минимум 8 х 8 х 96 мм. ПСБ упаковываются с двумя другими (отражателями будут) очень компактно. Развертка всей конструкции две пружины. Вся электроника должна уместиться на двух 3.5 х 2.5 дюйма - это значит при 20 часовой в неделе - 6 недель - 10 часов на прототип - 2 днф изготовление - 2 дня почта - 10 часов на проверку и пайку - и цикл повторяется - итого на третьем цикле - рабочая элктроника. Останется только промазать полиуриетаном (специальный и жутко дорогой). (Но софтвер еще не готов).

В выпечеке благодаря Виктору и Боре начали получаться постоянные результаты. Первое - печку надо чистить (нужен древестный уголь - только в русских магазинах можно купить - дуристика - в аптеках города нет - используют только в госпиталях - чтобы лечить наркоманов). Вторая причина - нужен температурный стабилизатор - что-то большое и железное, чтобы убрать гардиент температуры.

Перерисовал пакет с двумя двигателями - поместил на G+.

Переписал план полета.

И нужно закончить эту дурацкую веб-сайту - влез незнаю зачем - все повыпендиваться хотел - чтобы красиво было - нахрень красоту спасающую не знаю кого - но уже доделал - вэб-сайта готова к распределеенным вычислениям.

Sorry - no time for translation - if some body read this - use Google translate to English, pls.

ON JANUARY 20, 2014 05:52 PM Extruder, material for 3D printing, Gear for Ground station, etc.

Paste extruder finally showed up, material for 3D printing - copper-tin, copper-zinc, titanium-copper. gear for ground station and rover, vibration testing table.

ON DECEMBER 31, 2013 08:12 PM Happy New Year 2014!

ON DECEMBER 24, 2013 02:35 PM measurements planning for Ti Cu alloy

There are limitations what we can choose as manufacturing facility for rover's parts. Best solution is to make parts in-house, but that require metallurgy and 3D printing at hand. Measuring strength of alloys is one of "must be" part.

ON DECEMBER 11, 2013 06:21 PM Measurements (Episode 4,5,6)

- How strong satellite encryption algorithms? better than RSA 1024

- How documents creation process slow down design and development? 14 times (in our case)

- How many impulses needs to reach the moon? No measurements of the orbit == no answer.

On going development:

- distributed calculations of the orbit.

- material proved for printing metal parts on desktop 3D printer = titanium alloys.

NOVEMBER 20, 2013 01:44 PM Measurements. Comparison of two different paths to the moon.

Original approach was : non optimized LEO -trans lunar trajectory - correction impulse - brake engine - landing.

That require 250kg on LEO, with price tag 6,000,000$.

Alternative route - trans GSO flight, then trans lunar flight - brake engine - landing.

That can save tremendous weight (40kg instead of 250kg, with price around 2,000,000$), but data for trans GSO orbits (TLE) are not available to us. As a result it is hard to do any real estimations, speculations only. If somebody can share information about any past samples (preferable 3-4) of trans GTO orbits, we can be really appreciated for such data. Many thanks for Alexander Mikhailov for a tip about GSO orbits.

Спасибо Саше Михайлову за подсказку о полетах на геостационарные орбиты.

Такие полеты регулярны - как следствие цены более стабильные, и зная правильную переходную орбиту (и подстраивая ее к транс лунному перелету) возможно обойтись 40 кг вместо 250кг на LEO. это может резко удешивить весь проэкт с 6 лимонов до 2. Но - как всегда но - нужены образцы старых орбит - непонятно где их взять. Другая проблема - как разговаривать с хозяином спутника летящего на ГСО. Хотя вторая загвоздка не нова - это как на чемпионате мира по боксу - тежеловес ни когда не встречается с наилегчайшим весом.

NOVEMBER 04, 2013 12:04 AM @ Sunday

As it is:


OCTOBER 16, 2013 10:36 PM Happy thanksgiving, Canada. Space Shuttle's Paradox.

Engineer who had made a mistake in design of complex systems, with a technical vital parameter twice less than was required, probably will not be an engineer again.

Best engineers,  designers, advisers, economists, managers, did the design of Space Shuttle's system with one of vital requirements - to reduce costs. On the first flight it was calculated to be 5000$  per 1kg on the orbit, at time of full fleets readiness - 1000$, and at year 2000 it should be 100$ per 1 kilogram of payload on Low Earth Orbit. Space shuttle retired, and closest business "SpaceX" asked (in 2011) from Team PlanB about 180,000$ per 1 kg on LEO.

Paradox - engineers who reached The Moon got wrong in the vital parameter of the system 1000 times, not just twice. 

"where is the difference?". 

Question is interesting from a practical point to find the solution- If for this invisible structure, with antimatter inside, will be interest to make any deal, then path to the moon will be opened again.

----------Translation for my friend Шура-------------------------

Парадокс Космического челнока.

Инженеры допустившие ошибку при проектировании технического параметра системы более чем в два раза (мост построенный до середины реки, например) обычно должны сменить род своей работы.

Лучшие инженеры и экономисты разработавшие систему Шаттл ошиблись в 1000 раз, а не вдвое (на первых полетах стоимость 1 кг доставки на орбиту должна была быть 5000$, после создания флота 1000$ и в 2000 году цена должна была упасть до 100 долларов). Парадокс.

Вопрос - "куда деваются деньги?" - практичен - если эта дырка согласится на какое либо соглашение, то будет реальный шанс долететь до луны.

OCTOBER 13, 2013 12:24 PM Satellite communication encryption. Status – good!

In past was proved practical way to check strength of the encryption algorithms by setting the challenger via offering money for attempts to break encryption key.

I.e. see old "RSA factoring challenge" with prices up 100,000$ per breaking of algorithms used in HTTPS protocols.

We did set first challenger for our TOTAL encryption as 10 Lunar == 2030$. And nobody was able to decrypt message in 1.5 month in a case when source code was in open-source domain. It mean that strength of our satellite communication encryption is higher than 2000$. Let's do check again, but now with 100 Lunaro sterlings, which is equal to 20,000$.

Decrypt published message before November 10, 2013 and get that money.

Details, source code are on

Чтобы проветить возможностьи алгиритма крипторафирования на практике, применяется стандартный трюк - алгоритм публикуется вместе с неким зашифрованным сообщением. За расшифровку сообщения (нахождения ключа) предлагаются деньги. Лаборатория RSA криптования например с 1991 по 2007 год предлагала различные суммы до 100,000$ за взлом 1024 битного ключа.

Так как никто, за месяц, не смог расшифровать сообщение в нашем алгиритме криптования спутниковой коммуникации за 2000 долларов (извиняюсь 10 лунаро стерлингов), то опубликованный алгиритм "дороже" 2000.

Продолжим проверку алгоритма - объявление от 10 октября 2013 года - кто расшифрует опубликованное сообщение до 10 ноября 2013, Team PlanB выплачивает 100 лунных стерлингов, что в эквиваленте 20,000$ детали -

OCTOBER 02, 2013 12:46 PM Tech experiment - 3D printing metal parts in conditions similar to Lunar surface

Technological experiment on the way to 3D printing metal parts on a lunar surface.

Direct Metal Evaporation And Condensation method.

- lunar regolith consists with some, non zero amount of metals;

- extraction of different metals, can be done by applying different temperatures;

- vacuum conditions allow to do this with precision;

- Direct Metal Evaporation will be done inside evaporation chamber directly from a lunar regolith, or from already extracted metals;

- Condensation of the evaporated metal can be done on even surface with temperature up to 200C;

- Evaporation chamber can be positioned by applying the 3D printing technique;

Other technique - condensation surface can be a cavity formed by applying parts to a surface, and evaporation chamber could be fixed till a moment when metal will fill up mold's cavity.

Well, it is slow, but it can be precise, and in a case of remote controlled from the earth time is not critical.

Promising part of the story - on the Earth and at zero-gravity the same technique allows to 3D print parts with better precision than existing technologies.

SEPTEMBER 16, 2013 01:03 PM Outgassing, epoxy 526N, molding methods. Comm+BT+FLASH memory.

Outgassing. Carbon fiber molding - all steps with epoxy (to get proper part for a space flight).

Reason for outgassing is the classical example - flakes from star sensor's tube confused sensor and unmanned flight was lost.

Outgassing test is main in certification of any equipment for a space flight.

Fixing conflict of writing data to a FLASH memory with simultaneous request from RF core transmitter (Bluetooth) and serial (comm) loop.

Эпоксдка аремко 526N - -70-+300 цульсия. Карбон файбр с этой епоксидкой после затвердевания как ежик - каждая маленькая ниточка превращается в острейшую тончайшую иглу, все пальцы исколол. Полный цикл - 1 час в вакумной камере (10-15мм) для удаления пузырьков воздуха, 12 часов застывание при комнатной температуре, 3 часа при 92цульсиях, затем растворение ПВА формы в воде, второе запекание при 165ц ==2 часа ,и 9 часов ==200ц с вакумом = 1мм

Тест на газирование основной для сертификации любого компонента к полету.

Классичексий пример недачного материала - черная краска на звездном датчике зонда-4 - датчик реагировал на отвалившиеся кусочки краски, как на настоящую звезду.

SEPTEMBER 13, 2013 02:49 PM Camera view on launch.

Cape Canaveral, Aug 7, Delta4 launch, with military communication satellite WGS. Engine RS-68 + GEM 60 solid rocket motors. On orbit it will be XIPS (xenon-ion thrusters), and flexible radiator pipes (allowing to increase radiator area)

SEPTEMBER 09, 2013 11:59 AM Printed Music and etc.

Music, molds, coins, wheels, all was 3D printed. But it is not enough to reach The Moon. Essential to have a software and more important - people who will debug invisible sequence of bytes, stored in floating gates, insulated all around by an oxide layer, of metal oxide semiconductor field effect transistors.

Музыка, форма для отливки, монеты, колеса, все в этом клипе было отдруковано на трехмерном принтере. Но этого не достаточно чтобы дошкарбуваты до луны. Ще потрiбно програмне забезпечення, и люди которые отладят последовательности небачимих досель (и после) байтов, записаных за допомогою инжекции электронов в плавающие затворы полевых транзисторов, з використанням большой напряженности электрического поля у тонком диэлектрике.

AUGUST 30, 2013 01:00 PM Assembly. Wheel. Satellite communication. Encryption. Challenge 10 Lunaro Sterlings.

Encryption Challenge. Prize = 10 Lunaro Sterlings:
decipher the message (click to get exact ciphertext):

- source code, and executable provided,
- key (used for encryption),
- original video (used for key generation) inside this video.
- sample encryption/decryption.

Correct decryption, first, provided before 10 October, 2013 == 10 Lunaro Sterlings award (2020USD Deciphered text send via e-mail to with subject "Encryption Challenge. Prize" and one line of deciphered text.
Available -
- source code:
- key file used in encryption - 111.tkey
- video used in key generation - in current clip.
- sample: text un-encrypted:
cipher text after encryption (same key 111.tkey used):
after decryption:
interesting article about elliptic curves :

Приз – 10 Лунаро Стерлингов.
Первый расшифровавший сообщение до 10 октября 2013 года получает приз – 10 Лунаро Стерлингов (стоимость сегодня 2020$б стоимость 10 октября – 2030USD

(кликните ниже чтобы загрузить точный шифротекст):
=65000000a000000000000000ed45a19834912670eeaace8cc71a0da73a27aa9cff844d1fdc177c1794a5a3913f4757bcfb55a2a4f dda15ca0d0c3a811f3bb68233100d3f6f1f6bda9cdcf60cada1b2f776bf74a4ac66631efe07ff2be56771d058fd9d439517c773adbf7180a3ad0835f1=
Для расшифровки предоставляется
- исходный код программы шифрования
- исполняемая программа для windows (там же)
- ключ использованный для шифрования 111.tkey (там же)
- видео файл используемый для создания ключа
- пример
text un-encrypted:
cipher text after encryption (same key 111.tkey used):
after decryption:

Криптовальная программа предназначена для создания ключей шифроблокнотного типа для обеспечения защиты передаваемых данных между космическими аппаратами и наземными станциями связи, расположенными удаленно от центрального пункта управления полетом. Данный приз предназначен для проверки метода шифрования коммуникации спутниковой связи, предоставляемого Adobri Solutions Ltd на “open source” основе.

AUGUST 30, 2013 01:00 PM Assembly. Wheel. Satellite communication. Encryption. Challenge 10 Lunaro Sterlings.

Encryption Challenge. Prize = 10 Lunaro Sterlings:
decipher the message (click to get exact ciphertext):

- source code, and executable provided,
- key (used for encryption),
- original video (used for key generation) inside this video.
- sample encryption/decryption.

Correct decryption, first, provided before 10 October, 2013 == 10 Lunaro Sterlings award (2020USD Deciphered text send via e-mail to with subject "Encryption Challenge. Prize" and one line of deciphered text.
Available -
- source code:
- key file used in encryption - 111.tkey
- video used in key generation - in current clip.
- sample: text un-encrypted:
cipher text after encryption (same key 111.tkey used):
after decryption:
interesting article about elliptic curves :

Приз – 10 Лунаро Стерлингов.
Первый расшифровавший сообщение до 10 октября 2013 года получает приз – 10 Лунаро Стерлингов (стоимость сегодня 2020$б стоимость 10 октября – 2030USD

(кликните ниже чтобы загрузить точный шифротекст):
=65000000a000000000000000ed45a19834912670eeaace8cc71a0da73a27aa9cff844d1fdc177c1794a5a3913f4757bcfb55a2a4f dda15ca0d0c3a811f3bb68233100d3f6f1f6bda9cdcf60cada1b2f776bf74a4ac66631efe07ff2be56771d058fd9d439517c773adbf7180a3ad0835f1=
Для расшифровки предоставляется
- исходный код программы шифрования
- исполняемая программа для windows (там же)
- ключ использованный для шифрования 111.tkey (там же)
- видео файл используемый для создания ключа
- пример
text un-encrypted:
cipher text after encryption (same key 111.tkey used):
after decryption:

Криптовальная программа предназначена для создания ключей шифроблокнотного типа для обеспечения защиты передаваемых данных между космическими аппаратами и наземными станциями связи, расположенными удаленно от центрального пункта управления полетом. Данный приз предназначен для проверки метода шифрования коммуникации спутниковой связи, предоставляемого Adobri Solutions Ltd на “open source” основе.

AUGUST 19, 2013 01:10 AM Update.

Two words: 3D printer, GPS/Galeleo

AUGUST 13, 2013 03:14 AM Lunaro Sterling coin. Space money that propel space exploration.

Let's talk today about Lunaro Sterling Coin,which we think can lift Team PlanB, and not only us, to the moon.
If you look closely on "Space progress" in past 60-70 years, what you can see is milestones and breakthroughs were achieved by space enthusiasts like Goddard, Tsiolkovsky, Von Braun, Korolev.
Even today not many people will assign their life, and devote efforts for goals like making Mars habitable for human kind, or to build "space villages", capable to fly to other stars.
Theoretical calculations and stipulations, can be met with low resources. But practical implementation like building controllable explosions to propel payloads into the orbit, requires high resources.
At present and as it was in the last 60 years, nobody will vote -- "pro", to send chunk of money to the sky. The same chunk of money that is equivalent to building a small city.
But each action creates an opposite reaction in this universe, and such practical obstacle, as resources, century ago enthusiasts by-passed them with a smart move.
They promised for men with chevrons on shoulders to deliver dangerous payloads to any place on the globe by simple press of a button.
This decoy in goal worked for enthusiasts. And because of that they were employed, and each minute, every moment, when men in uniform was busy with nasty toys, enthusiasts use this opportunity to reach different targets - to build bigger rocket engine, launch satellite, that left their mark in space, on the moon.
Then, enthusiasm died. "Space progress" has killed the enthusiasm as reaction to massive "action".
Imagine: if the data from "Curiosity rover" would be available to Von Braun and Korolev. Such knowledge will deter any enthusiastic curiosity, because they would see human life on mars an impossible goal.
What choice do enthusiasts have today?,At best, probably, to make a movie. (As we do it now ) It can be done in color, in 3D, better be by a famous film director. And the movie can be watched in Dolby sound, together with popcorn, or on a smart phone on the way to work. Making it perfect sustainable approach.
What else? Crowd-sourcing? On Kikstarter, only one Google Lunar XPRIZE project was funded: "to write the article about the Lunar Google XPRIZE competition", and all other 3 technology-related projects did not reach funding level.
The National Space Agency and military will not support space enthusiasts. In the National Space agency, where enthusiasts are greeted with smile all and every time? Military is satisfied with their "status quo" - they are happy with their offset contracts and support of last century weapons technology.
Skip the business. Business usually interested in cheap "leftover" from space technologies. Even the mining industry with a 10-20 years return of investments period, hesitates to be involved.
It is common sense - if one wants to do something in The Space - it is just, their own problem.
It is essential to invent some independent mechanism to fund "Space devotees", to fund what people can create outside of the Earth surface.
In Team PlanB, we have made our attempt - it is Lunaro Sterling Coin.
First, it is merchandise. We can sell it, the same way as we sell t-shirt.
Second, as a coin, it is valued. It is made from silver. After each 2000 prints, a new design will be made to satisfy criteria: less mintage - more numismatic value.
Third, each coin has a certificate of authenticity provided online. The person owning the coin can set anonymous authentication by himself/herself. The owner of the coin can be changed only by providing such authentication.
More importantly the coin can be used as a barter payments, for service and equipment, outside the Earth surface.
It is similar to the crowd-sourcing approach, but it also keeps doors open for other funding possibilities. Instead of shares investor can purchase coins.
Truly speaking, IT IS "Space money".
In all regulations and laws, it is treated as merchandise. Merchandise on which taxes are paid. Merchandise that cannot can not be prohibited, in any part of the globe, to act as barter's payments for anything not belonging to this world. It is intended to be more than just circulating money, or payment method in Space.
It is designed to lift-off the technology from the earth surface.
"Space money" that does not have national boundaries, and takes advantage on the fact that space does not belong to any national jurisdiction.
The owners of the coins have the power to decide, how, and at what price to sell "Lunaro Sterling"
Team PlanB is ready to share "Lunaro Sterling Coin" design and authentication process with "Space devotees / Space enthusiasts" all over the world.
We do this because we think this is logical, innovative, effective, and “cool” approach to fund space enthusiasts.
What will happen if "Space devotees/ enthusiasts" fail to achieve their objectives and not reach their stars? Well, it will be nothing new in this world. However the coins, will tell the story.
Other updates for last week – communication protocol was ongoing project, (you can visit Github to see and download updates).
RF noise pattern recognition was on hold.
RF Front end prototype for GPS and Galileo system was obtained to develop and to debug positioning software.
Also on Github you can find 3d mold for wheel central holder.
It should be combined technology some elements of the mold (precision) will be made from alumini plastic, some (expendable) from PVA.
We look forward to seeing you again.

JULY 17, 2013 12:57 PM     Update, July 16, 2013.

Same grounds station, same communication protocol, flash memory, molds, carbon fiber.

JUNE 27, 2013 11:11 PM     Modem, Lunaro, RF noise pattern detection.

2.4 communication protocol implementation to be continued. If Implementation "as a Modem" is not good - to bad for implementation - source code was to be cut. Lunaro sterling coins database and web interface mock-up. Small program to detect noise patterns in RF. That's it for a past 1.5 week.

Модем не подходит - модем должен быть перепрограммирован. Лунаро монета - мок-ап базы даннах и веб интерфейса. Выделение паттерна шума из радио сигнала.

JUNE 18, 2013 12:45 PM     Data protocol extension. GPS implementation.

Packets transferred between microprocessors can be noisy, data can be lost. To recover from errors in header of the packet was added double unit address. Last byte in a packet can be skipped. Re transmit of the data to different micro-unit implemented on interrupt level.

Communication module do not work "like-modem" anymore. For upload data over radio-link in a packet was introduced CMD*. After CMD* rest of the packet transfer ether back to serial com (if no connection) or to the other communication module. CMD= extended to re transmit data to a another micro-unit.

GPS has a bad reception in concrete building. That creates problems in debugging GPS data processing inside main controller, - needs to take laptop and go outside.

Another SMD device able to retrieve raw GPS/GLOSNAT data was discovered - SE4110L. Without limitations on traveling speed and altitude. Device outputs data after ADC conversion. All data has to be processed in micro controller. Disadvantage - industrial temperature range.

Another alternative to GPS/GLOSSNAT was investigated but it is premature to say anything now - needs to process captured digitized data.

Serg was asked to embed some jokes to his presentation.

Внесены изменения в протокол обмена данными. Для восстановления от потерь хвостов пакетов в заголовок разрешен дублированный адрес. Закрывающий байт пакета может быть пропущен. Коммуникационные модули перестали быть модемами, для космической коммуникации это не практично. Внесена команда * - загрузки данных на подсоединенное устройство. Расширена (восстановлена из предыдущего небытия) команда = для ретрансляции пакетов.

GPS задрал - очень плохой прием в железобетонном здании. Как дурак берешь лаптоп и прешся в скверик, и вместо работы рассказываешь лекцию на тему - а что такое космос.

Появилась микросхема с полными причандалами GPS/GLOSNATA - SE4110L, до АЦП включительно, коштуе 3 бакса, хреноватый температурный режим -40+85. Достоинство - всю математику нужно считать самому и можно не платить за сертификацинную GPS (цена больше 10 штук, плюс нужно доказывать, что не был и в верблюдах не состоял) с отключенной защитой от скоростей больше 500 метров в секунду.

Другая альтернатива GPS обдумывалась, компонеты заказаны, и даже идея была опробована, - но пока все это несерьезные спекуляции - нужно обработать данные.

JUNE 11, 2013 01:45 PM     Clock synchronization between modules.

For proper functionality of Mission Control web site, Ground Station’s software, Ground Station’s microcontrollers, communication modules on ground station and on CubeSat, needs to synchronize clocks and timers on all devices. That process can be done in hardware. Software implementation of the process, has it is own challenges, but can bring advantages like ability to get orbit parameters.

Assembled part of ground station. Gear & wheels.

JUNE 04, 2013 10:58 PM     3D printed parts of ground station/rover, Main PCB, etc.

In software development exist rule - if source code working from the beginning - that mean only one -- something wrong with a source code. Such excitement discovery was made last week by Alex -- he was wondering why main computer board starts to function right away, but 3.3 voltage regulator during last month was overheated like boiling water -- well it was simple 6 SMD components was soldered upside-down. Current was 180 milliamps, instead of 18. Fix was quick -- it takes 10 minutes to rework PCB, but positive part is components was chosen properly - all 6 SMDs was working perfectly after 1 month stress.

Integration continue on GPS and Camera. HD Camera waiting it turn together with Orbitcomm backup communication modem. Integration at the rest of the week was not a full scale SNAFU, which was bothered Alex little bit. And finally -- all 3D printed parts for a rover and ground station showed up last Friday. Some imperfections was fixed - like this on a HD camera sealed box, or on camera box -- probably the thickness of a wall (target == made from carbon fiber) will be OK, but for rover testing (that part additionally to a camera box functionality will be used as a leg for a movement) plastic is not strong enough. For reduced size ground station tubes was made from aluminum, and assembly was in a progress

MAY 26, 2013 10:42 PM     3 configurations, Mission Ctrl + Ground station integration

Last 2 weeks - Rover - was done 3 configurations.

a) Rover as moon rover - it is a "virtual rover". Exists in 3D model formats. Majority parts has to be made from carbon fiber. To make each (carbon fiber) part need to design molds, and to print molds from PVA (like this) on a 3D printer (like that). Today we know that on that printer, to make all molds, and to make all carbon fiber frames (like this), with "space capable to fly" epoxy (like this) it is require total 45 days. That is why we named that moon rover as a "virtual one". Before arrangements of the flight to the moon, it is not practical to spend time and efforts to build such device. Only demonstration can be a purpose for rush, to build a "virtual rover".

b) Rover as a ground station for a test flight. That is exactly same rover but designed to operate on the earth surface. In this case it is not require use of carbon fiber. Same parts can be made from less strong plastic.

c) Compact version of a rover. It is not a rover truly speaking -- it looks like regular ground station, but parts for such configuration is exactly same as in configuration (b). That compact version also is for a debugging software purposes. Configuration (b) and (c) has totally different mechanical properties, but software which will control 4 stepper motors in first configuration and 2 steppers motors in second configuration, must be the same, software should be self adaptable for such different mechanical configuration, to perform task for orientation the antenna to a moving target -- flying cubesat.

Plus convenience to use 3D printing on factory allows, to separate process of design and manufacturing, make ground station on 2.4Ghz for a cubesat repeatable, and, who knows!, can allow to support main project by taking orders to build 2.5 GHz ground stations. Parts can be ordered on next week via shapeways factory.

Antenna will be regular helix (like this one), or reduced size helix (like that one). Reduced size helix has major advantages -- 3D print is twice less expensive than regular helix; different winding of a conductor allows to reduce interference of two transmitters working on the same frequency at the same time, which is important in a case of constellation of cubesats flying together.

Ground station electronics and software. The same main processor board for ground station (like this) is reused from a cubesat main processor board. Last week was done integration of a board with mission control, today mission control can operate flash memory and main computer commands. Some improvements was done on simulation of a flight, and session data visualization.

ON MAY 13, 2013 10:19 PM     Ground Station, rover ver 6, clearance, solar power harvesting surface.

Last week was spent in redesign of a rover and ground station. It was done by three main reasons –

a) ground station needs to be build and 3D models for 3D printer has to be finalized.
b) clearance of a rover needs to be increased.
c) needs to increase solar power harvesting surface.
In old design on frame was mounts for flexible solar panels (cells).
each cell has size 25.4 x 63.5 mm = 16 square centimeters.
length (long side )of the frame was 600mm, that gives a place for 23 panels with total surface of 0.037m^2
two frames allows to use 4 times more - total 92 cells, or total .14 m^2
with efficiency of 0.09(9%) and power of a sun per square meter = 1000Wt surface can give 13.35 watt total.
Top side of a rover can harvest some energy, but at the same time bottom did not, it is in shadow – outcome power probably is half == 6 watts.
Solar panels mounted on frame with 45 degree angle.
Problem (b) frame is not flexible, in can stuck on terrain - as a result needs to increase clearance.
Second problem (c) - needs to increase harvesting power surface. (6 watt capable source with 40% efficiency of a 10 watt transmitter, means that transfer of data can be done only in 1 minutes with another 3 minutes 20 seconds waits to harvest the energy.
Flexible solar panel side is 63.5 mm. Assuming it is hypotenuse - that geometrically gives in prime triangle with 45 degree angle, side sizes 45+45mm – which is bigger that original 63mm.
Sizes of each cell will be smaller (like 25.4 mm x 44.9 mm) but on same frame now it is 46 cells with 0.052 m^2.
On 2 frames can be placed 4 groups of 46 cells, calculating same efficiency and same Sun’s power, that surface allows to harvest total 18.8 watt.
Same top-bottom and max outcome power is 9 watt. That is better, than previous design, and it mean == 1 minutes to transmit + 2 minutes to harvest.
Placing additional 2 stand (length 0.5m) which can hold 19x4 = 76 small size panels outcome additional 0.17m^2 with total power 15wt (and half of tit is 7wt). Gives the grand total is 34wt from all surfaces, and halfing gives max s 17 watt power. Which is not bad – on top of each minute to transmit it will require 35 seconds to harvest.
Now the question where to place that two stands. Plus needs to balance weight- i.e - 350grams for each 4 stepper motor, but gear motors can be reduced to have less torque. That can save around 50-100 grams on a motors in favor for stands. Reducing clearance makes smaller dimensions and also saves weight.
Total amount solar cell (sizes 45x25mm) to accommodate on rover today is 168. With weight limit of 400 grams for all system it is 2.3 grams per flexible cell including weights of holders and mounts. Plus needs to account that after 3 week flight cells will lost 1/2 of it power capability. Realistically it will be 8 watt of power at best.
That is a theory – up today Ground station's 3D models probably ready to be ordered, but rover's energy harvesting mounts not finalized yet.

ON MAY 06, 2013 11:41 AM One checkbox implementation in web interface

One checkbox implementation in mission control web interface - real-time data for orientation vectors for ground station antenna. == Same xml file used for visualization of a CubeSat trajectory, also used to feed antenna control. .
TRA application now can accept data in XML format from a remote, dynamically created "initial" position, and post results of trajectory calculations back to the same or even different server. That future allows to calculate trajectory and engines firing time in parallel via distributed calculations network. Probably the same mechanism can be used in screen saver app.
details on

ON APRIL 28, 2013 01:27 AM  Communication, sat's trajectory simulation.

Communication, packages of commands, re-design from standard modem communication implementation, flush memory buffer to speed up data transfer, triple flush memory with majority voting (protection from radiation damage). Visualization of calculated trajectory in simulator to generate commands for (a) ground station and (b) craft/cubesat. GPS satellites traject's simulation for proper calculation of a craft/ground station positions.

Also suggested to watch perfect video about design and manufacturing of a Apollo computer (MIT). My favorite part are buttons on the front panel. Video finally made available on youtube last year. Enjoy:

ON APRIL 20, 2013 11:46 PM Overview of mission control

Last week's changes

on -

ON APRIL 18, 2013 04:36 PM Visualization, XML, trajectory, Lunaro, MySQL.

Thanks Vera!
This is sample ugly animation of two years ago. o.

The Earth In the central point, the moon is the ellipse.

And the trajectory of the flight path missed the lunar surface in the direct flight. This occurred because of insufficient third (main) impulse, and the Prob did not reach the 11/10 distance the Moon's orbit. Rules are - miss direct flight to the celestial body == and satellite will fly in space forever.
Animation made from sequences of a jpeg files produced in tra.exe run. TRA.EXE runs independently (may be on different computer(s) ) and produce jpeg in a projection of a two axes –XY/XZ/YZ, but it is also can output xml file with current positions of sun-earth-moon and polylines of a trajectories (sun-moon-earth-satellites), all what I need is visualization. Java is ok – I do not think it will be strong requirements to install java+java3D on computers running ground stations. From page click on link "In development Craft's /CubeSat's Mission Control. Follow link below ", or directly - on click on "Simulation".

For sure if it is possible to do visualization without java but with scalable vector graphics – in that case I can dump java applets and use Jscript. Attached .xml files with samples of coordinates. Also need to use textures (maps of earth/moon) and lights to have a realistic of day/night line – otherwise without lights it is complicated to modify textures on a fly. I like link but I do not think it will be millions of the users interested in visualization of a GPS satellite position and trajectory calculations/visualization. For a nice representation of a flight path l would prefer to make a screen's saver with dynamic animation (length 1 min max) and with changing view angle on each run. In that case screen's saver can become a useful tool – running on hundreds/thousands computers and picking up from server values for possible trajectory (like - one computer tries one ranges of impulses, another computer tries another set – you know - distributed calculations). With java I can easily do this – switch from the applet to the application, but what about Jscript and SWG?

Now about MySQL and Lunaro – Today I know how to do Lunaro's transactions without recording personal information – only place where personal information will be present is the session (session's variables) on the server (server is protected by HTTPS) and E-mail delivery system. I did not finalized cases of fractional payments (like 0.0015 Lunaro), and postponed delivery of coin(s) after original payment (again question is about storage/location of personal information).

If to look at BitCoins - it is a nice idea, but it is not what I have in mind. Truly speaking all mathematicians must be jealous – BitCoin is monetization of prime numbers. Next stop will be, let say, a using irrational numbers as silver, and complex numbers as gold (“ How much for a nice looking, last million digits of 3.1415..? Can I use 3.1415..+j2.7182818284… as a guaranty for home renovation loan?”). BitTorent (as distributed storage and processing) idea is not quite fit to a BitCoin/ banking system – in any transaction needs to have “trusted witness” – more servers runs, more chance for cheating. Distributed system should be used to recovery from a loss (different reasons for loss – technical, legal, etc) of the trusted servers. If MySQL can work as a clusters with all-masters mode, and with replication process done automatically, that that is exactly what it is needed.

Another problem (to be accounted) is stated on their website - BitCoins are for transaction, not for capitalization. Two nuggets of gold extracted from earth are not equivalent of two proved prime numbers (sorry four to be exact), even was used the same amount of electricity to extract/to get. If somebody uses some prime numbers, proved by a computers' calculation, and anybody can find the same prime number just by pure luck, than for sure system works when prime numbers has to be disposed regularly. If to talk about money, the capitalization needs to be solved, otherwise the scam or crush pre-programmed to the system. I think physical object needs to be used (by the way Victor’s suggestion about rare earth elements are not crazy to speak), capitalization and transaction is like potential and inertial energy in dynamic system - required for stabilization.

ON APRIL 11, 2013 11:02 AM Mikhail Kochetkov in Vancouver.

In the beginning was the word:
. . само собою как-то приключилось, ь,
Я их обидеть не хотел,
Я просто делелал что хотел,
Я просто делеал что хотел - и получилось.

ON APRIL 03, 2013 05:39 AM Buenos días, Santiago

From Team PlanB

Team Puli

MARCH 05, 2013 09:11 PM Main PCB board with 3 CPU on it (including GPS).


Soldering kainda a problem - for indium alloy (In60Pb40)it is very time consuming, with indium(In60Pb40) soldering paste is less available and expensive, with indium (In100) paste is low strength (SMD components can not withstand good vibration), plus is 155C max, plus it is less sticky.
For ground station and CS prototype used Sn60Pn40. For relatively simple board process takes 2 hours for components list, 1 hour for manual paste distribution, 1 hour for placing SMD, 7 min in oven. For InPb soldering it will take around 2+6 hours.
And it will be less video from now on – next CubeSat flight software.

MARCH 04, 2013 10:12 PM 2.4Ghz LNA, test's failures, and finally == worked.


A lot of failures and attempts to make “2.4Ghz LNA” working, and at clear sky over Vancouver it finally done. Tests includes standard BlueTooth transmitter/receiver 1mWt (0 dBm) and second device (LNA with cascade 3x12 =36 dB, transmitter 6dBm 4mWt). “Standard 0dBm” transmitting signal needs to be picked up from 10km. At the same time “standard – receive” will be picked up from 4 km. Two persons with cell-phones call each other and confirm communication session by looking on a blinking LED. LED blinks only when proper packet was received and processed (including restoration of noisy packets from different BT and WiFi transmitters in urban environment). Noise also has to be suppressed from cell-pones stationary transmitters (on top of SFU hill and QE park at Vancouver).

Design from the beginning was successful but was not able to be proved by range tests, each time max range was 1km. Finally problem was resolved when Gregory an Boris pointed that “coaxial wire” is probably is not a “real coaxial. Impedance of wire was measured, adjustments was done, and at rainy day poaring rain brought conformation that everything is working, then on march day at clear sky over Vancouver comes conformation of range tests, 2.5km-OK;;

Even to do test on 10km was not necessary. Signal received by standard BT from 6dBm was picked up on 4km, and according “rainy test” that mean antennas-amplifiers system must to pickup signal over 20km which is more than it was expected.


Old technical recording. R1 (V2/A4) replica. Events behind the film.

In part 4 of 1948 the documentary explained all failure rocket/engines/systems and then briefly mentioned successful launches. All test failure analyzed, problems and fixes recorded on film and explained in details.

Test 1. Rocket #4. Failure explained by Boris Chertok:- “I was responsible for the first crash,” declared Chernov. “At the launch site, Korolev saw me, called me over to the launch pad, and explained, ‘This missile is Soviet, but the launch pad is still German. Do you see the onboard skid contact? It starts the timer at the moment of launch. Its rod rests in a corresponding niche on the launch pad. The pad needs to be fixed so that everything will be ready by morning.’” Chernov was devising and designing all evening. He woke up the metalworkers in the middle of the night and by morning in the workshop on the special train they had produced his version of the skid contact stop, or more correctly speaking, the liftoff contact. According to Chernov’s version of the story, his student design did not withstand the powerful pop, and the contact broke after the “ignition” command rather than after the missile lifted off from the launch pad. The horizon gyro timer started ahead of time; a pitch command was sent to the control surfaces, tilting the missile immediately while it was still on the pad. As the missile was leaving the pad, the plume was pointed, not vertically, but at an angle, and it hurled the pad off into the steppe."

Test 2. Rocket #3. Failure - "The second missile proved to be even more obstinate. To begin with, the ground crews eliminated all the defects in the ground-based cable network. Next, during two launch attempts the engine did not start, despite the fact that the system did not reset. After long experiments on a missile standing on the pad, they discovered that the main oxygen valve had frozen. Eventually they removed the oxygen valve from one of the missiles and checked its ability to freeze. They determined that the cause of the failure was the stiffening of the abundant amount of oil in its bellows assembly. The missile tests were discontinued. The main oxygen valves were removed from all the missiles and sent to the factory in Khimki for degreasing. This was a powerful blow to engine designer"

After third test failure - "The high-ranking leaders had been fully convinced that we had not only studied and reproduced German technology, but had substantially increased the missiles’ reliability. And now suddenly they discovered that the missiles, for various reasons, simply refused to fly."

Event behind film - "The next missile launch scheduled for 1 November was postponed due to severe fog. During the night, the sentry guarding the launch site showed exceptional vigilance and for some unknown reason shouted, “Stop! Who goes there?” No response came out of the fog and he fired a warning shot. The guard raised by the alarm found nothing suspicious in the surrounding area. Arriving at the site the next morning, the launch team immediately smelled the strong scent of alcohol. An inspection showed that the shot the night before had not been fired into the air, but rather into the filled alcohol tank. The missile’s entire tail section was drenched with alcohol from the bullet hole. They removed the missile and shipped it to the factory in Podlipki for restoration and sent the sentry to the brig. Voznyuk was advised of the guards’ utterly unsatisfactory training."

Operator turned launch's key actually launched first satellite and first man into the space. All military personal recorded in film rest of their life was involved in space launches.

Official conclusion: “The first series of R-1 domestic missiles in terms of their flight characteristics, as demonstrated by the flight tests, were not inferior to the captured A4 missiles. Fundamental issues during the reproduction of R-1 missiles from domestic materials were correctly resolved … The flight characteristics of the first series of R-1 missiles conform to the characteristics specified by the tactical and technical requirements, with the exception of range scatter.”

Combat general statement - "What are you doing? You pour over four metric tons of alcohol into a missile. And if you were to give that alcohol to my division, they could take any city easily. And your missile wouldn’t even hit that city! Who needs it?"

All military likes alcohol! What else to say. Perfect choice made by Von Broun for space exploration!

Posted two episodes from Old Russian de-classified technical recording video made in 1948. Was long circulated via internet. Its first customer was Josef Stalin, and then, after, it was used as a training video. A lot of current documentary used some parts of the video recently. Includes frames with Korolev, Chertoc, Glushro, Barmin. In part 4 is a statement: “...V-2 type rocket was successfully replicated from all domestic materials...”.

Video is interesting because of part 4 (in next post). At the beginning was descriptions of all failures (rockets/engnes/etc.), then all failures analyzed and fixes explained. At the end a small portion of a successful flights (not in chronological order).

Closed Captioning added - tried different languages by google translation.

Enjoy and do not consider that video as a post according MTA, it just for recreation == copyright technically should belong to Uncle Joe.

Ordinary competition's day
Memory - core type (real core) - 512 bytes - from old military computer, could survive under any solar weather, but small and heavy - uploading a video for a team's blog - the third party liability insurance - antennas (cool looking but a garbage) impedance matching - substitution for a lucky penny == 1 Lunaro Sterling coin - moving a GPS prototype into a schematics - main computer schematics - routing traces on PCB - sleep 8h (not recorded) - Clear sky over Vancouver == communication test 7h, 3.5 km (hard to catch == impossible to record) - PCB tracing ( GPS + memory storage module flash 2GB) - continue uploading video for a blog - sleep (recording skipped ). On a background: Alexander Galich's + Turetskogo choir + "June 31" movie's songs.

Technical recording. Carbon Fiber. Mold == PVA
Not much to say – was video recoded to analyze what went wrong –
(a) dimensions of a mold – PVA’s 3D printed parts are 0.3 mm tolerance and depend on a tracing process (g-code generator) it has “quantum” effects, small changes and part become 0.3mm longer. That effected round parts. Configuration for 3D printer depend on 3 stretching coefficients. Better they will be equal 1 and then in 3D model will be adjustment of dimensions.
(b) Tolerance of any dimensions has to be remover (because of the reason (a). And adjustment should be done manually.
(c) Carbon “sweater” is little bit thick especially soaked in epoxy – it takes extra pressure to insert. Distance btw walls (in main stepper motor's holder) has to be increased by 1mm.
(d) Final size for stepper motor's holders must be 0.3 mm plus.
(e) Wall for second stepper motor (camera stand/ antenna mechanism) needs to be 15mm low – mistake.
(f) No “impact adsorption” epoxy layer. Stepper motor’s mounts (on rover – not on ground station) needs to be treated by additional layer of epoxy with microspheres to accommodate impact. 203C, 10h baking will be for fully assembled frame.

Technical recording. Frame. Mold assembly. 3D printed parts. PVA.
All parts of mold was 3D printed from PVA. PVA are tricky to print, slow speed are the only choice.As a result mold consists from small parts.Need to glue parts of the mold together. With PVA glue.
But before assembly needs to dry parts - Under Vancouver's weather it is essential step. Bake parts in stove / oven under 50-60C for 1 hour, and cool down inside zip-lock bag. Last step after assembly - PVA from the glue makes mold soft. Reason - water from a glue.
To solve this (it was not recorded on video) mold needs to be placed together with 1 pound of the sugar inside zip-lock bag. Baking in oven also can help.
Now mold ready for composite manufacture -- knotted carbon fiber + epoxy will do job.

Technical recording. Frame. Mold assembly. 3D printed parts. PVA
All parts of mold was 3D printed from PVA. PVA are tricky to print, slow speed are the only choice.As a result mold consists from small parts.Need to glue parts of the mold together. With PVA glue.
But before assembly needs to dry parts - Under Vancouver's weather it is essential step. Bake parts in stove / oven under 50-60C for 1 hour, and cool down inside zip-lock bag. Last step after assembly - PVA from the glue makes mold soft. Reason - water from a glue.
To solve this (it was not recorded on video) mold needs to be placed together with 1 pound of the sugar inside zip-lock bag. Baking in oven also can help.
Now mold ready for composite manufacture -- knotted carbon fiber + epoxy will do job.

Yo-ma-Yo! What is that? Grandpa left lunar prototype wheel unattended!

Technical recording are essential part in designs process. Any time it is possible to return back and check what was done wrongly. Especially in a knotting the carbon fiber. Big knotting machines does its job in socks mass production, but individual design require something better then flat/round surface. Sweater knotted manually ideal solution, if does need more layers in specific place, - it is not a problem. Skilled hands can do what can not do big, expensive robot. Nobody has that experience better than your mom. Knotting methods has to be recorded definitely. Let name it knotting-how.

Technical Recording. Part 2.Golden Ears provincial park , BC.

Communication tests 2.4GHz.
Fist test on a maximum range with 1mWt transmitting power did not come well. Reason was obvious. Test was set over lake’s water. Adsorption by the water surface was major reason. If transmitters/receivers located 3-4m above water surface then communication was fine, but close to water more signal was lost. Another solution was to orient antennas with the angle (30-45 degree) to the surface, which reduces 2.4GHz signal adsorption by the water.
Second planned test with 30dBm (1Wt) transmitters also was planned badly. For test were used regular 1Wt amplifiers suited for wireless network. Wi-Fi networks usually uses transmitted power more than 10dBm and design for “busters” accounts that fact. Two channels in amplifier, one for transmit (1Wt) and another for receive (10-15dB) has to be switched depend on “original” Wi-Fi behavior. Switching in amplifiers tuned to strong transmitting signal. For sure 0dBm (1mWt – Bluetooth level) was not enough to switch on regular amplifier.
But weekend has successful – weather was fine, scenery was gorgeous, Golden Ears as original Gold Rush Trail is a perfect place to dig for gold, whatever definition of gold anybody has. Thank for all participants from Vancouver’s community for there support.

Team Plan B. Golden Ears, BC, Canada. Technical recording, Part 1.

That was a technical recording of last summer’s tests of a communication system 2.4GHz. Transmitting power was 0dBm (1mWt), hopping frequency allows in Canada to use up to 36dBm (4Wt) transmitter without restriction on antenna’s designs, in US it is a limit 30dBm (1Wt). Some restrictions apply on time intervals, and rules of switching channels.
On preliminary range test it was 500m no problem. Calculated range was 1000m. Was made attempt (a) to measure max distance over lake surface, (b) to measure performance using “standard” 1Wt amplifiers.
Part 1 was recorded at Golden Ears Provincial Park, over summer’s 2012 weekend, near Vancouver, BC. Sound was noisy. For Russian speaking audience – be careful with “Close Caption” on video clip – warning: laughing can be uncontrollable.
Thanks you, all participants from Team Plan B community and enjoy nice scenery of Beautiful British Columbia.